

CO-CREATING
THE SMART

CITIES OF
TOMORROW

2 © Orchestra Cities

PRODUCT SHEET

Features

Security Management
Device Management
Data Management
Dashboard Management
Data Integration Management

IoT Standards COAP, MQTT, AMQP, LORAWAN

Security standards OAUTH 2.0, OIDC, SAML, KERBEROS,
LDAP, X.509

Supported Clouds AWS, GCE, AZURE, OpenStack,
VWMARE vCloud

3 © Orchestra Cities

Table of Contents

1. Concept ... 4
Why Orchestra Cities? .. 4
Key Benefits .. 5

2. Platform Overview ... 6
Security ... 6
Data Management .. 8
Device Management ... 10
Dashboard Management .. 11
Analytics .. 12
Data Service Integration ... 12
Open Standards ... 13

3. Roadmap ... 14

4. Our Partners ... 15

4 © Orchestra Cities

 “Technology is nothing. What's important is that
you have a faith in people, that they're basically

good and smart, and if you give them tools,
they'll do wonderful things with them.„

Steve Jobs

1. Concept

Why Orchestra Cities?

The Smart City solutions market is mostly driven by large players that rely on
proprietary technologies. Only recently have a small niche of solutions been
adopting an Open approach. The forerunner technology in this niche is FIWARE,
the most mature Open Source framework available today dealing with
requirements for Smart Cities. The Orchestra Cities concept takes on FIWARE
principles and strives to push them further.

FIWARE is designed around the concept of Openness. Concretely this means:

• Open Standards

• Open Data Models

• Open APIS

Orchestra Cities embraces the above principles and aims to extend them to
enable City-to-City collaboration and Citizens-to-City collaboration.

5 © Orchestra Cities

Specifically, what does it mean? Orchestra Cities aims at building a collaborative
space for shaping a sustainable and participatory future for our cities, where:

• Citizens can share data from their devices with other citizens or with the city

• Businesses can easily build services on top of APIs that are shared across
different cities

• Cities can benefit from data published by other cities to create analysis,
comparisons and forecast

Orchestra Cities differs from other platforms in that it believes the most efficient
and effective way to achieve its goals is to support multiple cities in a single
platform. This approach brings several advantages in terms of: costs, scalability
and modularity.

Key Benefits

• Support the migration from vertical data silos1 to a unified data space for a
single integrated view over the city

• A collaborative space where different cities can share data and services,
while retaining control on their own data

• Modular and flexible approach where each city can acquire just the needed
services and quotas

• Reduced ownerships costs thanks to the possibility of sharing the platform
among different cities

• Leverage Open Standards and Open Source code, thus building on the work of
a large European and global community

• Allow citizens and businesses to take part on the city services co-creation
process

1 The concept of vertical data silos refers to data stored in different not interoperable
platforms (e.g. waste management, parking management).

6 © Orchestra Cities

“As an artificial world, so the city should be in the best
sense: made by art, shaped for human purposes.„

Kevin Lynch

2. Platform Overview

The platform, as depicted in the picture above, is composed of different
microservices that are orchestrated using state-of-the-art solutions such as
Docker2 and Kubernetes3.

Orchestra Cities functionalities available as of today include:

• Security Management.

• Device Management

• Data Management

• Dashboard Management

• Data Integration Management

Security

The core of the security management is based on OIDC and OAUTH 2.0
standards. The solution supports Identity, Access and Organisation
Management.

2 https://www.docker.com
3 https://kubernetes.io

Context Broker Timeseries API

IoT Agent

API Manager

Id
en

tit
y

M
an

ag
er

Dashboard Data Portal Business API
UI

CEP
IoT Agent

IoT Agent
IoT AgentIo

T
Ag

en
t

M
an

ag
er

Data Flow API

Analytics API

Data Flow
UI

AMPQMQTT COAP LWM2M

7 © Orchestra Cities

• The Identity Management support enables it to manage single users
(covering authentication aspects).

• The Access Management supports the control of access of users to specific
applications or platform services (e.g. dashboard) with a given role (e.g.
editor), thus covering authorization and audit aspects.

• The Organization Management support maps users to organizations (i.e.
cities) so to host a multi-tenants within a single platform instance (i.e.
different cities, same users) approach.

This solution, in combination with the support in the data management layer of
data partitioning by tenant, enables the secure and controlled access by each
tenant (e.g. a city) to its specific data. Moreover, it empowers different users to
have access to different city data spaces with the same account.

The open source solution adopted for the Identity and Access Management is
Keycloak4, the market-leading open source identity and access management
solution developed by RedHat.

The adopted open source solution for API Management is gravitee.io5. To apply
access control to APIs, Gravitee offers a flexible plugin mechanism to implement
access control policies.

The process works as follow:

1. When an API request is generated by a client

4 https://www.keycloak.org
5 https://gravitee.io

8 © Orchestra Cities

2. The token for the specific Application/Client is checked at Keycloak OAuth
2.0 API

3. If the token is valid (i.e. authenticated and authorized for a given OAuth
client), the policy extracts from the token the list of tenants and verifies that
the requested tenant space is included in the ones accessible.

In case of success, the call will be forwarded to the API in the backend (if not, the
user will be returned a 401 “Not Authorized” response).

Data Management

The core of the data management is a “data bus” collecting data from the
different sources and forwarding them to the different backend APIs based on
the specific scenarios. This “data bus” is provided by Orion Context Broker6, the
reference implementation for a NGSIv2 broker. All data used in the platform
transits through it: IoT Devices data, External services data, Platform generated
data.

Orion Context Broker supports different interaction modes. Services can provide
data to the Orion Context Broker with the following modality:

• Data Push: services send data to it.

• Data Pull: services expose data via a standard API, that the Orion Context
Broker queries to retrieve data.

• Services can obtain data with the following modality:

o Data Subscription: services subscribe to a given data and get notified
when the data is updated.

o Data Query: services query the Orion Context Broker to retrieve data.

These interaction modes provide a very flexible way to integrate data provider
(e.g. sensors) and data processing services (e.g. analytics). In the case of IoT
Agent, as discussed in the following section, the recommended solution is the

6 https://fiware-orion.readthedocs.io/en/master/

9 © Orchestra Cities

Data Push model (however the Data Pull model is also supported), since this
allows constantly up-to-date data in the Orion Context Broker that can be used to
generate Data Subscriptions.

The other core component of the Data Management layer is the Timeseries API.
The role of this component is to store all the historical data of a given entity
(Orion Context Broker stores only the current value in time of a data). The
Timeseries API will be provided by Quantum Leap7, an NGSIv2 compliant time
series API. Quantum Leap supports as backend CrateDB, which is also supported
by Grafana (see next section) to generate dashboards. QuantumLeap supports a
variety of queries (including geographical-based), facilitating the access to
historical data by services in need of working on batch data sets.

In short, the process will work as follows:

1. A subscription is created for each data model (e.g. Weather), to get
notifications forwarded to the Timeseries API service (e.g. Quantum Leap)

2. Data of entities matching the created subscription gets updated in the
Context Broker

3. Notifications are sent to the subscribed services (e.g. Quantum Leap). Each
notification includes the whole data model (or a fragment, depending on the
subscription created).

4. The subscribed service processes it using its logic (in the case of Quantum
Leap, it stores the received data in CrateDB).

7 https://quantumleap.readthedocs.io

10 © Orchestra Cities

Device Management

To manage the IoT devices, Orchestra Cities leverages FIWARE stack and hence
the NGSIv2 API and data format. FIWARE offers a wide range of so-called IoT
Agents. Each IoT Agent enables different transport and message protocols to be
used to connect IoT Devices. Orchestra Cities covers all protocols supported by
FIWARE (UL, JSON, LOWARAN), being the recommended one UL, a very
lightweight message protocol (e.g. attribute1|value1|attribute2|value2 becomes
t|10|s|true|l|78.8) that supports MQTT, AMQP or HTTP transports. The IoT Agent
role is to map low level messages generated by the device to higher level
information used at the so-called application layer and to forward the structured
and aggregated information to the data management layer of the platform.
FIWARE IoT Agents support the concept of “device groups”, i.e. a set of devices
sharing the same information model. This facilitates the registration of a large
set of devices that provides the same information, which would otherwise have
required the user to configure one-by-one with device-specific information (if
required at all).

To facilitate the registration of IoT Devices within IoT Agents, we provide an UI,
thus simplifying the overall operation. The process will work as follow:

1. Through the portal (or the API) a user can register a device

2. The device configuration (which includes for example the transport, besides
the attribute mapping discussed above) is stored in the device registry for
later use

11 © Orchestra Cities

3. Once configured, the device can send messages to the agent (in the picture,
the HTTP transport is assumed)

4. When receiving a payload, the Agent checks the configuration of the device to
transform the incoming “simple” message into the NGSIv2 payload

5. Finally, the Agent sends the NGSIv2 payload to the Context Broker

Dashboard Management

To allow the creation of custom dashboards, we use an open-source dashboard
engine called Grafana, an open platform for beautiful analytics and monitoring.
This technology integrates a set of “panels” that provides support for rendering
objects such as lines, points, bars and heat graphs, basic maps with info pointers,
picture panels and more useful panels to display any kind of data. It also includes
a collection of data-source plugins, that allows it to integrate Grafana with
different databases and backends such as Crate (the back-end of Quantum
Leap), JSON, and Google calendar. Grafana aims to provide an easy and intuitive
way for public officers to monitor different KPIs of their city. This dashboard can
run on multiple end-user devices without installation and provides good
responsiveness for the dimensions of desktop screens, mobile phones and
tablets. Also, it can show online historical data while filtering and sorting data
dynamically. The data can be zoomed in to have fine-grained views of values or
the same data can be seen in a Tabular format, allowing users to sort data by
different column values. The ability to present maps with information points
allows cities to visualize in real-time all the data that is being collected by the
sensors. Besides that, cities are able to define actions based on the information

12 © Orchestra Cities

and events of the dashboards and create alerts based on data thresholds; for
example set an alert when a waste bin is on fire. Dashboards can be easily
shared, customized and embedded in other tools.

Analytics

While the dashboard can provide simple real-time analytics, for more complex
tasks we integrated an Apache Spark8 cluster in the platform. The cluster,
integrated to the Data Management layer, enables the analysis of a data set (e.g.
Weather forecast) whether they are real-time and/or historical data.

Data Integration

To integrate external services and data sources, Orchestra Cities currently
leverages on Apache NIFI. This tool allows the creation of visual workflows for
data injection into the platform. Workflows support web services, files and other
sources and can be saved to replicable templates so that different cities can
instantiate and customise their own data import flow for a given service.

8 https://spark.apache.org

13 © Orchestra Cities

Open Standards

Orchestra Cities relies on different Open Standards that facilitates the integration
with existing solutions.

Security OAUTH 2.0, OIDC, SAML, KERBEROS, LDAP, X.509

IoT
Protocols: UL, JSON, LWM2M
Transport: HTTP, COAP, MQTT, AMQP, LORAWAN

Data
Exchange

Protocols: JSON/REST, XML/SOAP, FTP/HTTP, WEBSOCKETS

Data format: NGSI, JSON, GEOJSON, CSV, EXCEL, TEXT

Cloud Docker, Kubernetes

14 © Orchestra Cities

“If everyone is moving forward together, then
success takes care of itself.„

Michael Jordan

3. Roadmap

Orchestra Cities is under active development, these are some of the features we
plan to work on in 2019.

New release of the Orchestra Cities portal, with integrated management for:
devices, entities, historical data, users.

Live City: a City-Centric App to display pre-cooked scenarios to help the
management of cities. E.g. status of waste bins, parking, …

Deep Learning API: an early stage demonstrator to show how Machine Learning
can be applied to create models and data forecasts in Orchestra Cities.

Simplified Data Flow design leveraging StreamSets

Improved integration with CKAN

15 © Orchestra Cities

“Some people want it to happen,
some wish it would happen,

others make it happen. „

Henry Ford

4. Our Partners

To develop our solutions and to test them we have worked and continue to work
with a number of selected partners.

Solutions have been tested in POC with

Wolfsburg

Antwerp

Helsinki

16 © Orchestra Cities

